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The stress-strain constitutive relation for linear viscoelastic materials may be 
expressed on the real time axis by any of several convolution integral formula- 
tions. It has been pointed out by Tschoegll that Laplace transformation to the 
complex plane2 leads to expressions which are particularly revealing in terms 
of the physical insight they provide into the relationship between excitation 
and response. Under such a transformation 

C(s) = sE(s)E(s) = Q(S)E(S) (1) 
where u is the stress response to a strain excitation E ,  Eis the relaxation modulus 
and Q is the relaxance,l an alternative material response function. In Eq. (1) 
the overstrike indicates the Laplace transformed function f ( s )  of a time 
dependent function f ( t ) .  The dual relation to Eq. (1) involves the creep 
compliance, D,  and the retardance113 function, U. 

Equation (1) reveals1 that the relaxation modulus is the stress response to 
a unit step function of strain while the relaxance represents the stress response 
to a unit delta function; this follows from the fact that the Laplace transforms 
of the unit step and unit delta function are I /s and unity respectively. 

Both of the required excitations (delta and step function) are in fact un- 
attainable experimentally. It has been common experimental practice, however, 
to approximate the step excitation by rapidly stretching a specimen to a 
predetermined strain and maintaining that strain for all times after the rise 
time, t o  (ramp function excitation). While it is clear that the true material 
parameter E(t )  is not obtained if a ramp function excitation is employed, it can 
be shown4 that for times significantly greater than to,  the measured stress 
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2 R. E. COHEN 

response differs only imperceptibly from E(t ) .  This is the often overlooked 
justification for obtaining stress relaxation data from short rise time ramp 
excitation experiments. Aklonis and Kelchner5 have discussed this problem 
in some detail; they estimate that loto is an adequate delay time for stress 
relaxation experiments on most viscoelastic materials. 

Since even the ubiquitous stress relaxation experiment involves some 
compromise with viscoelastic theory, it is reasonable to inquire into the 
possibility of an analogous experimental approximation which may allow for 
direct measurement of the relaxance function. One possible approximation 
is the unit triangle pulse strain excitation shown in Figure 1 and expressed 
mathematically as follows 

T(t)  = ( I  /ro2)[th(t) - 2(r - ro)h(t - to) 4- ( t  - 2t0)h(r - 2to)l (2) 

Here h(t) is a unit step function and to is the rise time at which the triangle 
pulse reaches its peak. 

Inserting the Laplace transform of the triangle pulse excitation into Eq. ( I )  
yields 

84 = ( I / t ~ ) ~ [ E ( s ) / s  - (2E(s)/s)(exp - sro) + (E(s)/s)(exp - 2st0)l (3) 

The first term can be inverted directly to  integral form in the real time plane.2 
The second and third terms can be inverted by employing6 a transform pair 
technique. Eq. (3) then becomes 

T ( t )  

AREA = I 

1 -  
310 

R =  I / t ,  

7R 

FIGURE I Graphical representation of the unit triangle strain pulse, where R = I / t$  is 
the rate of application and removal of the strain excitation. 
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RESPONSE OF VISCOELASTIC MATERIALS 3 

Eq. (4) gives the stress response of a viscoelastic material with relaxation 
modulus E(t )  to a unit triangle pulse strain excitation. The response is a 
family of curves with each time dependent response curve corresponding 
uniquely to a different excitation rise time t o .  

To illustrate the response of a viscoelastic material, it is necessary to have a 
viscoelastic model upon which to base the calculations. Often employed for 
such purposes is the three parameter Maxwell model whose relaxation modulus 
may be written as 

E(t)  = El + E2 exp - t / T  ( 5 )  
where T is the relaxation time, El is the relaxed (equilibrium) modulus and 
EZ is the difference between the unrelaxed (glassy) and the relaxed modulus. 
This expression may be substituted into Eq. (4) to calculate the stress response 
of the model to a unit triangle strain pulse of arbitrary rise time. Such response 
curves are shown by the dashed lines in Figure 2 for the various rise times and 
the model parameters indicated. The solid line in Figure 2 is the relaxance 
function for the selected model and is obtained by differentiating Eq. ( 5 )  with 
respect to time. 
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FIGURE 2 Stress response of the three parameter model to a delta function excitation and 
various triangle pulse excitations. The values of time indicated next to the dashed curves refer 
to the rise time, to,  of the corresponding triangle pulse excitation. 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
4
:
0
2
 
2
3
 
J
a
n
u
a
r
y
 
2
0
1
1



4 R. E. COHEN 

Figure 1 demonstrates that the triangle strain pulse may represent a useful 
method for investigating the relaxance functions of viscoelastic materials. 
The triangle pulse response curves all approach the relaxance at  sufficiently 
long times; the observed behavior is qualitatively similar to that of ramp 
function response curves in their approach to the relaxation modulus. The 
present theoretical analysis says nothing, however, about the feasibility of 
generating the required triangle pulse strain excitation. Furthermore, stress 
response data obtained in this way should be treated carefully to exclude 
inertial contributions and end effects which are bound to complicate such 
experiments. Even so there is considerable motivation for seeking information 
on the relaxance function because of the new insight it might provide into the 
understanding of viscoelastic response. In particular, Q ( t )  is a direct measure 
of the first time derivative of the relaxation modulus. This, and the second 
derivative, dzE(t)/dt2, provide interesting information’ on the rate of energy 
dissipation and the fading memory of viscoelastic materials. The reliability 
of twice differentiating modulus data is questionable, but if good relaxance 
data were available, they could be differentiated once with confidence. Thus 
the triangle pulse experiment and resulting relaxance data would bring us a 
step closer to obtaining the desired information reliably. 

Finally, it may be noted that the triangle pulse is an excitation function 
of high speed and brief duration. The associated response is, as mentioned 
above, related to energy dissipation in viscoelastic materials. This suggests 
that the relaxance may be a material function which correlates with impact 
resistance in viscoelastic materials. At present none of the linear viscoelastic 
material functions provides fundamental insight into this important physical 
property. However, a rise time of less than 0.1 sec would be required for the 
triangle pulse to approximate impact loadings conditions. Such sharp loading 
of the specimen would certainly result in some “ringing” or related inertial 
effects which would require great care to overcome in practice. 
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